











































































































MATH 2050C Lecture 26 Mar 15

Recall E S defeat for limit of functions
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him f x L V E 0 7 8 8 e o s t

x 7C I fax L l s E

whenever X E A o L IX C l c 8
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Prop limfix if exists is uniqueX 2 C

PI Exercise

Q How are the concept of limits for seq

and functions related

1hm Sequential Criteria f A IR
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we have him focus L

limit of seq

Proof Assume limfix L
x 7C

Let Xn be any seq in A St X holds

claim lim fkn L
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Since 1,2 fix L by E I def 2 of limit
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Argue by contradiction

Suppose on the contrary assume the R Hus holds
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Cor 2 Divergence Criteria
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Let's look at a few examples
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Example 2 The sign function
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